

INTRODUCTION TO R
Lincoln University LTL PG workshop

Material prepared by Alexa Byers

Alexa.byers@lincolnuni.ac.nz

A basic introduction to the R statistics packages and

programming environment

October 2019

October 2019

1

Contents
What is R? ... 2

Getting started with R ... 2

The R interface .. 2

Data types and structures .. 4

Types ... 4

Structures .. 4

Vectors .. 4

Lists ... 6

Matrices .. 6

Data Frames .. 6

Factors ... 7

Using R studio... 7

Obtaining help for a command.. 8

Importing data in R Studio .. 9

Setting up your working directory or folder ... 9

Importing data from Excel .. 9

Handling data .. 10

Summarising data.. 10

Plotting data .. 11

Reshaping data .. 12

Summarising continuous data ... 14

Exporting data from R studio .. 15

Workspace and history .. 15

Data export .. 15

R scripts .. 15

Basic statistics ... 16

t-test .. 16

ANOVA via a simple linear model ... 16

ANOVA and multiple comparison tests ... 17

Simple linear regression .. 18

Useful R functions and packages .. 20

Community resources ... 23

October 2019

2

What is R?
R is a free, open source statistical package widely used in academia and amongst

environmental scientists and ecologists. It functions as both a statistics package and computer

programming environment and allows anyone to add on or update packages which provide

new functions in R.

Benefits of learning R- widely used by most industries and an attractive skill for employers;

can handle large complex datasets; provides thousands of packages covering a wide variety

of functions including data manipulation, high quality visualisations and statistical modelling;

open source software so can run R anywhere at any time; supportive R community to help

new users and provide solutions to problems running R packages.

Getting started with R
Downloading the latest version of R- https://www.r-project.org/

Downloading R from local CRAN mirror https://cran.r-project.org/mirrors.html , New

Zealand CRAN- https://cran.stat.auckland.ac.nz/

Downloading R studio (desktop) https://rstudio.com/products/rstudio/download/#download

The R interface

When you first open R you’ll be given a window that looks like Figure 1. Two important

components to be aware of are the

1. R console. The window that will run all of your code and any results you expect will

appear in the R console. When you first open the console it will provide information

of what R is and which version you’re currently using.

https://www.r-project.org/
https://cran.r-project.org/mirrors.html
https://cran.stat.auckland.ac.nz/
https://rstudio.com/products/rstudio/download/#download

October 2019

3

2. Toolbars. The toolbar is important for opening, saving and creating new scripts as

well as providing information on what packages you have available and offering a

‘Help’ list.

Opening an R script

File > New Script

3. R Script (R editor window). Although we can type R script into the R console, it will

not be saved. Any code you wish to save needs to be written inside a script and then

1. R console

2. Toolbars

3. R script

1. R console

2. Toolbars

October 2019

4

we can save the script for reopening another day to continue working on it. To save an

R script go to

File > Save as

And save your scripts somewhere safe and easy to find for when you next need to find them

Data types and structures

Types

Everything in R is an ‘object’, but there are 6 basic types of objects or data types in R:

1. Character e.g. “a”, “cat”

2. Numeric e.g. 2, 15.6 (real or decimal)

3. Integer e.g. 2L (the L tells R to store this as an integer)

4. Logical e.g. TRUE, FALSE

5. Complex e.g. 1+4i (complex numbers with real and imaginary parts)

Structures

R has many data structures. These include:

1. Atomic vectors

2. Lists

3. Matrices

4. Data frames

5. Factors

We won’t go in depth on all of these data types and structures in this workshop, but it’s

important to be aware of them as you are likely to use them at some point.

Vectors

A vector is the most common and basic data structure in R and is pretty much the workhorse

of R. Technically, vectors can be one of two types:

1. Atomic vectors

2. Lists

Although the term “vector” most commonly refers to the atomic types not to lists. When we

call a vector ‘atomic’, we mean that the vector only holds data of a single data type. Vectors

are most commonly of mode character, logical, integer or numeric.

We can create empty vectors using the functions vector(), character(), or numeric()

however it is more common and useful to directly assign values to vectors using the c() (for

combine) function.

See example below which uses the following code:

vector("character", length = 5) # a vector of mode 'character' with

5 elements

character(5) # the same thing, but using the constructor directly

October 2019

5

numeric(5) # a numeric vector with 5 elements

x <- c(1, 2, 3)

y <- c(TRUE, TRUE, FALSE, FALSE)

z <- c("Sarah", "Tracy", "Jon")

Side note: This is the first time we’ve used the # (hashtag) symbol in our code. Anything

written after a # (hashtag) will be treated as a comment, and will not be run by R, when you

run the line of code. It is extremely useful as it allows you to directly write notes into your

code.

1. Environment

We’ve created three new vectors, and they’ve appeared in our environment. Notice that the

name, type of data (character/numeric/logical), and also the values of the vector are all shown

in the environment.

So now we’ve created some vectors, we can also manipulate them if we wish. Notice that we

have re-assigned a new value over x – objects can be written over at any time.

We can use the functions typeof(), length(), class(), and str() to find out useful information

about the vectors (or objects in R in general). We can also use the c() (combine) function

again if we wish to add some new values to one of the vectors.

> typeof(z)
[1] "character"

> str(z)
 chr [1:3] "Sarah" "Tracy" "Jon"

> z <- c(z, "Tom")

October 2019

6

> z
[1] "Sarah" "Tracy" "Jon" "Tom"

Lists

In R lists act as containers. Unlike atomic vectors, the contents of a list are not restricted to a

single mode and can encompass any mixture of data types. Lists are sometimes called generic

vectors, because the elements of a list can be of any type of R object, even lists containing

further lists. This property makes them fundamentally different from atomic vectors. Create

lists using list() or coerce other objects into lists using as.list().

Matrices

In R matrices are an extension of the numeric or character vectors. They are not a separate

type of object but simply an atomic vector with dimensions; that is rows and columns. As

with atomic vectors, the elements of a matrix must be of the same data type.

m <- matrix(nrow = 2, ncol = 2) #Create a Matrix with 2 rows and 2

columns

> m
 [,1] [,2]
[1,] NA NA
[2,] NA NA

Data Frames

Data frames are one of the most important data types in R, and will likely be the one you use

the most. These are the de facto data structure for most tabular data and what we most

commonly use in statistics.

Essentially a data frame is a special type of list where every element of the list has the same

length (i.e. data frame is a “rectangular” list). Imagine an excel spreadsheet with 4 columns

and 50 rows, with each cell containing data – this would be a data frame in R.

Data frames can be created by hand using the data.frame() function but are more commonly

imported into R. You can check the length of a data frame using the nrow() (number of rows)

or ncol() (number of columns) functions.

dat <- data.frame(id= letters[1:10], x = 1:10, y = 11:20)

dat

 id x y

1 a 1 11

2 b 2 12

3 c 3 13

4 d 4 14

5 e 5 15

6 f 6 16

7 g 7 17

8 h 8 18

9 i 9 19

10 j 10 20

> nrow(dat)

[1] 10

October 2019

7

> ncol(dat)

[1] 3

Factors

A factor is a vector that can contain only predefined values, and is used to store categorical

data. Factors are built on top of integer vectors using two attributes: the class, “factor”, which

makes them behave differently from regular integer vectors, and the levels, which defines the

set of allowed values. Factors are useful when you know the possible values a variable may

take, even if you don’t see all values in a given dataset. Using a factor instead of a character

vector makes it obvious when some groups contain no observations:

sex_char <- c("m", "m", "m")

sex_factor <- factor(sex_char, levels = c("m", "f"))

> table(sex_char)

sex_char

m

3

> table(sex_factor)

sex_factor

m f

3 0

Using R studio
R studio provides a new interface for R with additional features which make it easier to use

than traditional R. R is the main programme and RStudio uses R to complete its tasks

therefore RStudio does not work without R.

RStudio introduces useful features to help you code more smoothly. It uses different text

colours identify character strings (green), numbers (blue), comments (green), errors (red), etc.

It also introduces standard ‘environment’ and ‘plot’ windows which we’ll explain more

below.

October 2019

8

Obtaining help for a command

To get help for use of a command, add ? followed by the command name

?boxplot

1. R console

4. R script

2. Environment/History

3. Files\Plots\Packages\Help

\Viewer

October 2019

9

Importing data in R Studio

Setting up your working directory or folder

RStudio needs to where to look to find and export data and it is best practice to create a folder

for any particular analysis to store your R scripts, data files and results. Before you begin you

analyses create a folder in your Documents called ‘PG R Workshop’

Now you must tell RStudio that ‘PG R Workshop’ is the folder to use for this current R

session. On the RStudio main menu, click

Session > Set working directory > Choose directory

Navigate to the folder you just created and click on the ‘Select folder’ button

Importing data from Excel

R does not have a built in spreadsheet therefore it is usually easier to enter your data in Excel,

export it from Excel in a .csv or other text file format and then import it into R.

Import data into RStudio using the read.csv command. Type the commnat at the > prompt

symbol in the console window. This command needs to know the exact name of your file in

quotes.

October 2019

10

rainfall.dat <- read.csv("rainfall.csv")

The <- sign in an assignment sign which assigns the data you have just imported into an R

table of data called rainfall.dat. R stores in this data in a workspace which you can see listed

if you click on the Environment tab at the top right of you R Studio screen. If you double

click on the name you will see the data displayed in a spreadsheet like viewer which you can

edit.

Handling data

Summarising data

You can use the summary command to find the mean (average), median, min, max etc. of

you data

summary(rainfall.dat)

 Rainfall Site
 Min. : 59.19 A:12
 1st Qu.: 61.67 B:12
 Median : 84.10
 Mean : 83.90
 3rd Qu.:106.29
 Max. :107.41

This data frame contains a continuous response variable and one categorical explanatory

variable, which is summarised differently.

To display the whole data frame in the console either use the print command or enter its

name-

rainfall.dat

print(rainfall.dat)

For large datasets, use the head command to check the first few rows of a data frame-

head(rainfall.dat)

 Rainfall Site
1 105.5372 A
2 106.6686 A
3 106.7742 A
4 103.7552 A
5 106.6457 A
6 107.4057 A

To type selected rows or columns, use square brackets [] and enter the row or column

number you wish to display. A number before the comma refers to rows, a number after the

comma refers to columns. To display column number 1 of your data frame use-

rainfall.dat[,1]

To display rows only 2 to 7, enter numbers before the comma inside the square brackets-

rainfall.dat[2:7,]

October 2019

11

The tapply command is useful to provide summaries within categories. For example, to find

the mean rainfall (column 1) summarised by site (column 2) use-

tapply(rainfall.dat[,1], rainfall.dat[,2], mean)

 A B
106.08613 61.71708

(mean can also be substituted with var or sd to get summarises of variance or standard

deviation)

Plotting data

To produce a simple box and whiskers plot showing median and interquartile range to

visualise your data, use

boxplot(Rainfall ~ Site, data = rainfall.dat)

The ~ symbol inside the brackets is to indicate which column is the explanatory on the right

side (i.e. site) and which is response on the left (i.e. rainfall).

To add a title (main), y axis label (ylab) and x axis label (xlab), use:

boxplot(Rainfall ~ Site, data = rainfall.dat, main="Summary of

monthly rainfall (mm) between field sites A and B", cex.main= 0.7,

ylab = "Monthly rainfall (mm)", xlab = "Field site")

October 2019

12

If we wish not to display the variation in rainfall values for each field site, we can simply plot

a barplot showing the mean average rainfall. We can do this using the following code

data.mean <- tapply(rainfall.dat[,1], rainfall.dat[,2], mean)

barplot(data.mean)

To add a title, axis labels, increase the y axis range to 0-120mm and change the title font size

we can use

barplot(data.mean, main = "Average monthly rainfall (mm) in field

sites A and B", cex.main= 0.8, xlab = "Field site", ylab = "Rainfall

(mm)", ylim = c(0,120))

To export this plot, click on the ‘Export’ button on the graph and either copy it to your

clipboard or save as an image or .pdf file.

Reshaping data

Most univariate analyses in R require the response and explanatory variables to be in

different columns. Quite often, data is initially formatted in a way that is not suitable for use

in R. The below example shows the plant species diversity along six 10 metre transects across

three different meadows-

MeadowA MeadowB MeadowC

13 28 20

14 29 26

13 18 24

15 33 25

12 28 27

October 2019

13

17 20 24

To read this data into your RStudio session, use the read.csv command to import the dataset

from your working directory-

plantdiversity.dat <- read.csv("plantdiversity.csv")

print(plantdiversity.dat)

 MeadowA MeadowB MeadowC
1 13 28 20
2 14 29 26
3 13 18 24
4 15 33 25
5 12 28 27
6 17 20 24

To analyse this data within R, we must restructure this data so that the response and

explanatory variables are contained within two different columns. This can be done using the

stack command.

plantdiversity.stk <- stack(plantdiversity.dat)

print(plantdiversity.stk)

 values ind
1 13 MeadowA
2 14 MeadowA
3 13 MeadowA
4 15 MeadowA
5 12 MeadowA
6 17 MeadowA
7 28 MeadowB
8 29 MeadowB
9 18 MeadowB
10 33 MeadowB
11 28 MeadowB
12 20 MeadowB
13 20 MeadowC
14 26 MeadowC
15 24 MeadowC
16 25 MeadowC
17 27 MeadowC
18 24 MeadowC

This has split the response and explanatory data into two columns, however we must now

rename the columns into something more clear for our dataset using-

colnames(plantdiversity.stk) <- c("plantdiversity", "meadow")

View the new column headers and a summary of the dataset use the following head,

summary and boxplot commands-

head(plantdiversity.stk)

summary(plantdiversity.stk)

October 2019

14

boxplot(plantdiversity ~ meadow, data = plantdiversity.stk)

To obtain the overall plant diversity of the dataset use

mean(plantdiversity.stk$plantdiversity)

To obtain the mean, median, variance (var) and standard deviation (sd) plant diversity for

each meadow use

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

mean)

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

median)

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

var)

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

sd)

Summarising continuous data

Here we will look at summarising continuous explanatory data using a data set showing the

average monthly crop growth (mm) relative to the amount of monthly rainfall (mm) across 23

different locations in New Zealand.

cropgrowth.dat <- read.csv("cropgrowth.csv")

summary(cropgrowth.dat)

 Growth Rainfall
 Min. : 3.990 Min. :32.00
 1st Qu.: 5.975 1st Qu.:41.50
 Median : 6.740 Median :57.00
 Mean : 8.228 Mean :58.04
 3rd Qu.:10.340 3rd Qu.:66.50
 Max. :14.970 Max. :97.00

Unlike the rainfall dataset, R displays the min, mean and max values for your explanatory

dataset as it is now a continuous variable.

To visualise the dataset, you can scatterplot it using-

plot(Growth ~ Rainfall, data = cropgrowth, main= “Monthly crop

growth (mm) relative to average monthly rainfall (mm)”, cex.main=

0.7, ylab= “Crop growth (mm)”, xlab= “Monthly rainfall (mm)”)

In the above code, main, xlab and ylab are used to add plot title and axis labels; cex.main is

used to alter title text size and type=”b” is used to join data points by lines on plot.

October 2019

15

Exporting data from R studio

Workspace and history

You can use the ls() command to list every set of R objects you have in your workspace

environment. For example it can be used to list every object created in this workshop so far-

[1] "cropgrowth" "plantdiversity.dat" "plantdiversity.stk"

"rainfall.dat"

You can also use history () to display a track of what commands you have ran in your

analyses so far, which can be helpful for long, complicated analyses

history()

Data export

To export your data from R it is best to export it in the .csv file format for use in Excel using

the write.csv command

write.csv(plantdiversity.stk, "plantdiversitystacked.csv")

R scripts
R scripts are plain text files containing a list of R commands which you can annotate with

comments to information yourself/others of what you did and why. You can add commnets to

R scripts with the # symbol. This is very helpful if you want to repeat analyses and provides a

record of what you did. You should develop the habitat of storing all your analyses in R script

files.

October 2019

16

To open an R script file within RStudio, click File -> Open File and select the appropriate R

script file. To run the script, click on the Source button which will run the entire script.

Basic statistics

t-test

Here we will perform a paired t test to find out if the student scores for Maths are higher than

French. We will use the t.test function to do this.

First we need to import the scores.csv dataset into our environment

scores.dat <- read.csv("scores.csv")

Next we can run the t test, using paired = TRUE to indicate it is a paired t test we want to

perform. We use the $ sign to specify which column we want to use from the scores dataset

as we are only interested in using one at a time.

t.test(scores.dat$Maths, scores.dat$French, paired = TRUE)

 Paired t-test

data: scores$Maths and scores$French
t = 1.6922, df = 7, p-value = 0.1344
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5960154 3.5960154
sample estimates:
mean of the differences
 1.5

ANOVA via a simple linear model

This section will show how to run basic one way ANOVAs using the rainfall data set

previously imported into RStudio as rainfall.dat. We will use the lm() command to create a

linear model and test for significant differences in rainfall across two field sites using analysis

of variance (ANOVA).

rainfall.lm <- lm(Rainfall ~ Site, data = rainfall.dat)

October 2019

17

anova(rainfall.lm)

Analysis of Variance Table

Response: Rainfall
 Df Sum Sq Mean Sq F value Pr(>F)
Site 1 11811.7 11811.7 7251.6 < 2.2e-16 ***
Residuals 22 35.8 1.6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Results of this analysis show a significant difference in average monthly rainfall (mm)

between the two field sites (F1,22= 7251.6; P<0.001).

ANOVA and multiple comparison tests

We will now use ANOVA on the plantdiversity.stk data set to identify if there is a

significant difference in plant diversity across the three meadows. Following this we will use

the TukeyHSD command to run a Tukey multiple comparison test to identify which meadow

significantly differs from which.

plantdiversity.lm <- lm(plantdiversity ~ meadow, data =

plantdiversity.stk)

anova(plantdiversity.lm)

TukeyHSD(aov(plantdiversity.lm))

Analysis of Variance Table

Response: plantdiversity
 Df Sum Sq Mean Sq F value Pr(>F)
meadow 2 507.11 253.556 17.997 0.0001034 ***
Residuals 15 211.33 14.089

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = plantdiversity.lm)

$meadow
 diff lwr upr p adj
MeadowB-MeadowA 12.000000 6.371038 17.628962 0.0001589
MeadowC-MeadowA 10.333333 4.704371 15.962295 0.0006855
MeadowC-MeadowB -1.666667 -7.295629 3.962295 0.7270279

The results of this analysis show a significant difference in plant diversity between meadows

(F2,15= 17.80, P<0.001). Multiple comparisons tests revealed that plant diversity in Meadow

A and B and Meadow A and C were significantly different.

October 2019

18

Simple linear regression

This analysis will use the cropgrowth.dat dataset to run a simple linear regression to see if

there is a significant correlation between monthly crop growth (mm) and with increased

monthly rainfall (mm).

Begin by summarising the plotting the data-

summary(cropgrowth.dat)

plot(Growth ~ Rainfall, data = cropgrowth.dat)

To fit the linear regression, use the lm() command

cropgrowth.lm <- lm(Growth ~ Rainfall, data = cropgrowth.dat)

summary(cropgrowth.lm)

Call:
lm(formula = Growth ~ Rainfall, data = cropgrowth)

Residuals:
 Min 1Q Median 3Q Max
-1.8290 -0.5301 0.1204 0.7498 1.0475

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.27693 0.65010 -3.502 0.00212 **
Rainfall 0.18098 0.01072 16.888 1.07e-13 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.906 on 21 degrees of freedom
Multiple R-squared: 0.9314, Adjusted R-squared: 0.9281
F-statistic: 285.2 on 1 and 21 DF, p-value: 1.072e-13

Results of the regression model show the estimated vslue for the gradient is 0.18 and the P-

value is <0.001 so the results are highly significant. The overall regression F-statistic is 285.2

and is again highly significant (p<0.001). The adjusted R-squared value is 92.81%, so the

model explains over 90% of the variation.

To predict your raw data points with the predicted regression line plot

abline(cropgrowth.lm)

October 2019

19

We can use the following command to view the model diagnostic plots to check the model is

a good fit for the data use. The par(mfrow=c(2,2) command simply adds the 4 separate

diagnostic plots into one plot.

par(mfrow=c(2,2))

plot(cropgrowth.lm)

October 2019

20

Useful R functions and packages
GENERAL FUNCTIONS DESCRIPTION

builtins()

List all built-in functions

options() Set options to control how R

computes & displays results

?NA Help page on handling of missing data

values

abs(x) The absolute value of "x"

append() Add elements to a vector

c(x) A generic function which combines its

arguments

cat(x) Prints the arguments

cbind() Combine vectors by row/column (cf.

"paste" in Unix)

diff(x) Returns suitably lagged and iterated

differences

gl() Generate factors with the pattern of

their levels

grep() Pattern matching

identical() Test if 2 objects are *exactly* equal

jitter() Add a small amount of noise to a

numeric vector

julian() Return Julian date

length(x)

Return no. of elements in vector x

ls() List objects in current environment

mat.or.vec() Create a matrix or vector

paste(x) Concatenate vectors after

converting to character

range(x) Returns the minimum and maximum

of x

rep(1,5) Repeat the number 1 five times

rev(x) List the elements of "x" in reverse

order

seq(1,10,0.4) Generate a sequence (1 -> 10, spaced

by 0.4)

sequence() Create a vector of sequences

sign(x) Returns the signs of the elements of x

sort(x) Sort the vector x

order(x) List sorted element numbers of x

tolower(),toupper() Convert string to lower/upper case

letters

unique(x) Remove duplicate entries from vector

system("cmd") Execute "cmd" in

operating system (outside of R)

October 2019

21

vector() Produces a vector of given length and

mode

formatC(x) Format x using 'C' style formatting

specifications

floor(x), ceiling(x), round(x), signif(x), trunc(x) Rounding functions

Sys.getenv(x) Get the value of the environment

variable "x"

MATHMATECAL FUNCTIONS DESCRIPTION

Sys.putenv(x) Set the value of the environment

variable "x"

Sys.time() Return system time

Sys.Date() Return system date

getwd() Return working directory

setwd() Set working directory

?files Help on low-level interface to file

system

list.files() List files in a give directory

file.info() Get information about files

pi,letters,LETTERS Pi, lower & uppercase letters, e.g.

letters[7] = "g"

month.abb,month.name Abbreviated & full names for months

Maths

log(x),logb(),log10(),log2(),exp(),expm1(),log1p()

,sqrt()

Transformations: Log, Exponentials,

Square Root

cos(),sin(),tan(),acos(),asin(),atan(),atan2() Trigonometry

cosh(),sinh(),tanh(),acosh(),asinh(),atanh() Hyperbolic functions

union(),intersect(),setdiff(),setequal() Set operations

+,-,*,/,^,%%,%/% Arithmetic operators

?Special Help on special functions related to

beta and gamma functions

?Syntax Help on R syntax and giving the

precedence of operators

?regex Help on regular expressions used in R

?Paren Help on parentheses

?Mod Help on functions which support

complex arithmetic in R

?Logic Help on logical operators

?Extract Help on operators acting to extract or

replace subsets of vectors

?Control Help on control flow statements (e.g.

if, for, while)

sum() Sum or total (add things together)

integrate() Adaptive quadrature over a finite or

infinite interval.

deriv() Symbolic and algorithmic derivatives

of simple expressions

eigen() Computes eigenvalues and

eigenvectors

<,>,<=,>=,==,!= Comparison operators

October 2019

22

GRAPHICAL FUNCTIONS

help(package=graphics) List all graphics functions

plot() Generic function for plotting of R

objects

par() Set or query graphical parameters

curve(5*x^3,add=T) Plot an equation as a curve

points(x,y) Add another set of points to an

existing graph

arrows() Draw arrows [see errorbar script]

abline()

Adds a straight line to an existing

graph

lines() Join specified points with line

segments

segments() Draw line segments between pairs of

points

hist(x) Plot a histogram of x

pairs() Plot matrix of scatter plots

matplot() Plot columns of matrices

?device Help page on available graphical

devices

postscript() Plot to postscript file

pdf() Plot to pdf file

png() Plot to PNG file

jpeg() Plot to JPEG file

X11() Plot to X window

persp() Draws perspective plot

contour() Contour plot

image() Plot an image

STATISTICAL FUNCTIONS

DESCRIPTION

lm Fit linear model

glm Fit generalised linear model

nls Non-linear (weighted) least-squares

fitting

lqs "library(MASS)" resistant regression

aov() Analysis of Variance (ANOVA)

optim General-purpose optimisation

optimize 1-dimensional optimisation

constrOptim Constrained optimisation

nlm Non-linear minimisation

nlminb More robust (non-)constrained non-

linear minimisation

help(package=stats) List all stats functions

?Chisquare Help on chi-squared distribution

functions

?Poisson Help on Poisson distribution functions

help(package=survival) Survival

analysis

cor.test() Perform correlation test

October 2019

23

cumsum(); cumprod(); cummin(); cummax() Cumulative functions for vectors

density(x) Compute kernel density estimates

ks.test() Performs one or two sample

Kolmogorov-Smirnov tests

loess(), lowess() Scatter plot smoothing

mad() Calculate median absolute deviation

mean(x), weighted.mean(x), median(x), min(x),

max(x), quantile(x)

Summary Statistics

rnorm(), runif() Generate random data with

Gaussian/uniform distribution

splinefun() Perform spline interpolation

smooth.spline() Fits a cubic smoothing spline

sd() Calculate standard deviation

summary(x) Returns a summary of x: mean, min,

max etc.

t.test() Student's t-test

var() Calculate variance

sample() Random samples & permutations

ecdf() Empirical Cumulative Distribution

Function

qqplot() Quantile-quantile plot

Community resources

There are heaps of resources online to help out with learning to code, or just fixing problems

you encounter when coding – here are some of them!

Learning to code from scratch

https://www.datacamp.com/ - This website provides free interactive tuition for a beginner R

course. You have to pay if you wish to continue learning after the beginner material though.

Fixing Problems

https://www.google.com/ - First a foremost google it! If you’re having a problem in R then

it’s likely someone else has encountered and solved the same problem already. Either copy

and paste an error message into google, or try and describe your problem and you’re likely to

find a solution!

https://stackoverflow.com/ and https://stackexchange.com/ - These are very common

websites to search for answers to questions you may have. They will likely pop up in google

searches, but if you’re really stuck and cannot find the answer these websites allow you to

directly ask questions and have them answered by a very active coding community.

And finally, drop in to the library! Drop in sessions are every day from 10.30am-11.30am,

and you are welcome to book appointments with us outside of these times using

https://ltl.lincoln.ac.nz/advice/study-skills/book-a-workshop-or-appointment/

https://www.datacamp.com/
https://www.google.com/
https://stackoverflow.com/
https://stackexchange.com/
https://ltl.lincoln.ac.nz/advice/study-skills/book-a-workshop-or-appointment/

October 2019

24

Full code used today
This is also saved as an R script in PG workshop folder

#Data types and structures

a vector of mode 'character' with 5 elements

vector("character", length = 5)

the same thing, but using the constructor directly

character(5)

a numeric vector with 5 elements

numeric(5)

x <- c(1, 2, 3)

y <- c(TRUE, TRUE, FALSE, FALSE)

z <- c("Sarah", "Tracy", "Jon")

#finding out information about vectors

typeof(z)

str(z)

#adding new values to a vector

z <- c(z, "Tom")

#Create a Matrix with 2 rows and 2 columns

m <- matrix(nrow = 2, ncol = 2)

#Create a data frame with 3 columns of one categorical and two

numeric variables

dat <- data.frame(id= letters[1:10], x = 1:10, y = 11:20)

dat

#Setting factors for vectors with predefined values and categorical

variables.

#Shown here as the values are either male or female

sex_char <- c("m", "m", "m")

sex_factor <- factor(sex_char, levels = c("m", "f"))

#Help function

?boxplot

#Importing and viewing data

rainfall.dat <- read.csv("rainfall.csv")

October 2019

25

summary(rainfall.dat)

rainfall.dat

print(rainfall.dat)

#Selecting column/rows to view

rainfall.dat[,1]

rainfall.dat[2:7,]

#calculating data summaries, here calculating the mean

tapply(rainfall.dat[,1], rainfall.dat[,2], mean)

#Plotting data summaries

boxplot(Rainfall ~ Site, data = rainfall.dat)

boxplot(Rainfall ~ Site, data = rainfall.dat, main="Summary of

monthly rainfall (mm) between field sites A and B", cex.main = 0.7,

ylab = "Monthly rainfall (mm)", xlab = "Field site")

data.mean <- tapply(rainfall.dat[,1], rainfall.dat[,2], mean)

barplot(data.mean)

barplot(data.mean, main = "Average monthly rainfall (mm) in field

sites A and B", cex.main= 0.8, xlab = "Field site", ylab = "Rainfall

(mm)", ylim = c(0,120))

#reshaping data

plantdiversity.dat <- read.csv("plantdiversity.csv")

print(plantdiversity.dat)

plantdiversity.stk <- stack(plantdiversity.dat)

print(plantdiversity.stk)

#changing column names

colnames(plantdiversity.stk) <- c("plantdiversity", "meadow")

head(plantdiversity.stk)

summary(plantdiversity.stk)

boxplot(plantdiversity ~ meadow, data = plantdiversity.stk)

#plotting mean of overall dataset

mean(plantdiversity.stk$plantdiversity)

#plotting data summaries by each categorical variable

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

mean)

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

median)

October 2019

26

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

var)

tapply(plantdiversity.stk$plantdiversity, plantdiversity.stk$meadow,

sd)

#summarising continuous data

cropgrowth.dat <- read.csv("cropgrowth.csv")

summary(cropgrowth.dat)

plot(Growth ~ Rainfall, data = cropgrowth.dat, main= "Monthly crop

growth (mm) relative to average monthly rainfall (mm)", cex.main=

0.7, ylab= "Crop growth (mm)", xlab= "Monthly rainfall (mm)")

#viewing workspace history

ls()

history()

#data export

write.csv(plantdiversity.stk, "plantdiversitystacked.csv")

#paired t tests

scores.dat <- read.csv("scores.csv")

t.test(scores.dat$Maths, scores.dat$French, paired = TRUE)

#anova via linear model

rainfall.lm <- lm(Rainfall ~ Site, data = rainfall.dat)

anova(rainfall.lm)

#anova and multiple comparisons

plantdiversity.lm <- lm(plantdiversity ~ meadow, data =

plantdiversity.stk)

anova(plantdiversity.lm)

TukeyHSD(aov(plantdiversity.lm))

#simple linear regression

summary(cropgrowth.dat)

plot(Growth ~ Rainfall, data = cropgrowth.dat)

cropgrowth.lm <- lm(Growth ~ Rainfall, data = cropgrowth.dat)

summary(cropgrowth.lm)

abline(cropgrowth.lm) #add regression line to plot

par(mfrow=c(2,2)) #combined 4 diagnostic plots into one plot image

plot(cropgrowth.lm) #plot diagnostic plots

October 2019

27

